
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO10975
TITLE: Avoiding Obsolescence with a Low Cost Scalable Fault-Tolerant
Computer Architecture

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Strategies to Mitigate Obsolescence in Defense Systems Using
Commercial Components [Strategies visant a attenuer l'obsolescence des
systemes par l'emploi de composants du commerce]

To order the complete compilation report, use: ADA394911

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADPO10960 thru ADPO10986

UNCLASSIFIED

20-1

Avoiding Obsolescence with a Low Cost Scalable Fault-Tolerant
Computer Architecture.

Josef Schaff
Naval Air Systems Command

22347 Cedar Point Rd., Unit 6, Code 4.1.11
Building 2185, Suite 3130-B3

Patuxent River, MD 20670, USA

Overview Introduction
This new computer architecture can use anything from In general, CPU speeds increase faster than it is practical
COTS (Commercial Off-The-Shelf) microcontrollers to to replace them following Moore's law - speed doubling
the latest high-end processors. It is a distributed fault- every 18 months or so.
tolerant architecture that is dynamically reconfigurable in Much of current software needs the increased speed for
the event of device failures, and is fully programmable in various reasons, which include poor coding practices and
conventional high level languages. By using a simple inefficiency. There are some of us, of course who yield
two-level hierarchy with redundant control processors to the marketing pressures to have the fastest processor
that configure the I/O (Input/Output) processor commercially available for their own satisfaction. This is
arrangement, even the failure of several processors will something like buying a Ferrari for the sole purpose of
have no effect on data. An example is given of a real- driving in funeral processions.
time data acquisition system with a total cost for a 16 Due to the high cost of constantly upgrading CPUs to the
channel device with mixed sync/async and proprietary most current, and the financial loss of decommissioning
baud rates, of less than $500 in parts. This example older processors after only two or three years of service,
system can be reconfigured to any arrangement of 16 or we need to find an effective means of mitigating this
less serial interfaces, built-in obsolescence. The obvious solution would be re-
The architecture is flexible and can be expanded into two use. There are several ways that we could do this. One
levels: status, health and monitoring; and clustered I/O would be to completely redesign the CPU's architecture,
and processing. Additional expansion to a third level which would not be in the semiconductor manufacturer's
would add adaptive learning aspects. Each processor can best interest (but neither would effective re-use plans that
be dynamically removed or replaced, and is designed to reduced their future sales volume). Another way would
run a minimal amount of processor-specific software- be to design a computer architecture to allow the
about 1-2 kilobytes of code, which allows each new type incorporation of both obsolete and current processors
of processor added to be configured to respond as a working together and allow future processors to just
generic processor / CPU (Central Processing Unit). This 'plug-in' to this architecture. We will define our goals
facilitates the addition of new processors with a minimal for this architecture and details of implementation in the
amount of development. Present software may need to be rest of this paper.
modified to take full advantage of this architecture, Goals:
although by using currently available distributed 1) A low-cost, upwardly scalable architecture that is built
processor operating systems, most of the modifications from current COTS processors. The scalability will allow
can be avoided. The layout of the architecture allows future processors to work along with obsolete ones in a
both obsolete and state-of-the-art processors to work synergistic way.
together, and transparent replacement of obsolete 2) Full fault-tolerance, where a processor(s) can be
processors with newer ones. Some current software physically unplugged without losing data or overall
design methodologies can be applied to configuring the functionality.
hardware architecture, such as CORBA - The We want to do this with the most cost-saving approach.
architecture lends easily to Object Request Brokers - e.g. That would mean using obsolete processors in current
cluster CPU replacements can be specified by using equipment with state-of-the-art processors added to the
Interface Definition Language -type description of CPU architecture without large changes in software or
functionality, making it CORBA-like from a hardware hardware.
perspective. Further development and acceptance of this The objectives are to produce a seamless scalability
architecture can lead to significant cost savings and between the old processor and new processors, as well as
mitigate obsolescence in future computer design. eliminating single point failures with the inherent

redundancy of this architecture. Thus, expensive state-of-
the-art updates, which rapidly become obsolete, can be
replaced with a distributed architecture that supports both

Paper presented at the RTO SCI Symposium on "Strategies to Mitigate Obsolescence in Defense Systems
Using Commercial Components ", held in Budapest, Hungary, 23-25 October 2000, and published in RTO MP-072.

20-2

current, past and future processors working together in a as a display unit, and a master controller board of about
synergistic manner. 30x30 CMS in size.
The software embedded in each processor is easily This master board would include the 16 data channels
maintained code which effectively translates each unique that the original equipment monitored and use four
type of processor into a generic one in order to integrate microcontrollers ("Basic Stamp" microcontrollers) to
it into this distributed architecture. That also allows each each acquire four channels of serial data at the
CPU to work with small but powerful real-time operating proprietary baud rates, sync or async depending on
systems, as well as treat the processors as functional channel. This board has the capability to add channels by
objects to be added or deleted from the distributed just adding another microcontroller for each four
architecture, channels.

(See Fig. 0)
Current Computing Systems:
In pre-COTS days, the CPU was designed for specific
tasks. An example from about 1943 is Colossus, which Upgraded ystem or enec
was an electromechanical processor designed for code- Data Acquisition
breaking, and had its programming hardwired or set by
patch panel jumpers. Later on, software written for
processors allowed them to do general tasks and 0

eventually multi-task. More recently, processors were 161/0

designed for particular classes of problems, such as DSPs channels 4 4

for signal processing, 32 / 64 bit CPUs for desktop PCs,
and embedded controllers for small and medium scale
device control.

We currently have a variety of COTS and proprietary
systems that are either networked or stand-alone
throughout the world. Typically, COTS life is 2-3 years.
Large systems or mission computers, which may be
based on COTS components, are usually obsolete by the
time that they are fully deployed. This is due to a long
(by computer state-of-the-art standards) initial life cycle Figure 1 - the generic data acquisition system.
development and deployment. Advanced proprietary or
prototype systems usually have a longer life, but at a
much greater cost. Since each PIC microcontroller chip is less than 4cm2 ,
High-end systems with multiple processors and / or the entire board and connectors is small and fits in the
special parallel processing schemes use specialized briefcase with the laptop computer. Additionally, each
parallel algorithms that tend to lock in software to the PIC microcontroller has several unused I/O channels that
specific architecture, can be used as spares.
An example laboratory system is shown which replaced In summary:
a proprietary architecture that had reached the end of its (1) The large rackmount system was reduced in size to a
useful or maintainable life. A novel approach was taken briefcase.
to create a small scalable architecture based on COTS (2) A rigid, non-expandable system was made upwardly
that maintained full functionality and most software scalable.
compatibility with upward expandability. (3) The entire system is COTS based.

(4) The system costs less than $1000 in hardware
Example System (depending on the cost of the laptop -which could be an

This example system was originally a large rack- older model for $300-$500).
mounted VME-based system with proprietary boards.
Additionally, the base system was obsolete and the
proprietary boards had little or no supporting Improving the Original Concept:
documentation. The objective here was to upgrade this
system to a current scalable system for a hardware cost Lets re-frame the example's approach by using cheap
of less than $1000. The system should run a CPUs in clusters to handle larger problems. Is this like
commercially or freely available operating system, and the DIS (Distributed Interactive Simulation), currently
the upgrade should have minimal or no impact on renamed HLA (High Level Architecture), where
functionality, networked systems participate in simulations from any
The new system should also be readily portable, so it can location, and any system may deploy a real-time object
be designed into a briefcase with a laptop running Linux into the simulation world such as an adversary or threat

20-3

platform? Not really, as that is meant to support the in RTMX, PROSE and others, and be POSIX 1003.1b
HLA's interface aspects for simulations, real-time extension compliant.
We would want something that could handle generic
distributed processing as well as specific aspects of
computational processing, and perhaps parallel Fault Adaptation:
interfacing for multiple data channels. This architecturewoul besimlarin uncion o te STJ~omeweb If one or more processors are unplugged or damaged,

how can we handle this? What if a particular processor
site, where you are offered a chance to participate inS~ll serch nd ata s wll a a ice has an inherent exploitable vulnerability such that anSETI's search and data processing as well as a nice at ckfo aar ans cedprocesingattack from afar can succeed?
screen saver. This is in exchange for allowing your
computer to be used during idle time as one node in their
distributed processing architecture to process their data.
The SETI architecture is primarily a SIMD (Single
Instruction Multiple Data) type of parallel machine,
where a primary control machine is needed over all the
node machines, and this could be a source for single-
point failure. A comparison could also be made with our
design to the Beowulf architecture, in that it can run on
existing hardware, and can use open source software for
the most part. There are differences, however in that the
Beowulf cluster architecture is designed to run on private 0
high speed LANs, and not over a distributed network. n-dic aslyy uougs
According to the founder of the Beowulf architecture, it a processor -row
will not be designed to run over the Internet, or a similar
distributed approach. Again, Beowulf clustering is
designed to have a master node control the cluster.
Lets consider the best ways to build an architecture from X afar " 7??

varied and possibly obsolete components. We would
probably want a MIMD (Multiple Instruction Multiple
Data) type architecture, or a SIMD / MIMD mix of
clusters that can be dynamically reconfigured. In other
words, each cluster could be SIMD for fault recovery,
and the set of clusters would enable a MIMD Figure 2 - How do we deal with Faults?
architecture. We would also want to fall back to minimal
configurations if we should lose many of the clusters.
We will examine that first:We wll eamie tht fist:Both these situations call for some type of fault
Start out with a small architecture, and call it level 0. Botese suatiosn al for sm te of fuTThis architecture may consist of only a few CPUs that tolerance, usually not found in generic or COTS
Thisavecsimplecturules emayddedsistof aonly 1-2 ki s tt machines. We can, however determine an architecture
have simple rules embedded into about 1-2 kilobytes ofavoidance.
code for each processor. The code would also allow each ta incorporates t o f aul t avoid anprocessor to appear generic to the others, such that each By using a clustered approach to disparate CPUs we can

proessr t apeargenrictotheothrssuc tht ech avoid these shortcomings inherent in conventional
one could use a common generic instruction set. There aodtesewould be no need for a true operating system on each systems.
processor. Thesed prors a could o erating systemontoeah The design described here is optimal for multi-channel
processor. These processors could be microcontrollers, I/O intensive operations, but is not limited to that, andDSPs or other embedded systems as well as high level I/inesvoprtnbuisotlmedothad

has far more diverse uses. An example of this would be
CPUs. A single operating system would then run over low bandwidth but high levels of numerical calculations
all the processors. that work well in a distributed processing environment.
AWe define three levels of complexity in the architecture
small kernel real-time operating systems for each W e define three level he arcectureprocessor, or just each cluster of processors. (more can be defined later). Each level has processors
The code embedded in each processor would be similar organized into clusters of two or three for faultlhevodel 0mbedded app ach, andrmayohaves mnor wudi r avoidance. These clusters can act as a single processor if
to the level 0 approach, and may have minor differences complete data recovery is mandated, and as such inter-
for classes of functionality, such as I/O clusters vs. com munico n is data and assinger-
status, health and management clusters. These classes processor communication shares data and processing so
could define clusters as particular types of objects with thtcnysingleaprocessor failure will t afet taostrong object models defined in tools such as UML, processing capability. In some ways this is similar to the
RhapsodyooreRationllRoseffordobjectmodelingaas well RAID aspect of redundant disks for critical data storageRhapsody or Rational Rose for object modeling, as well anreory
as CORBA extensions.
The operating system running on each processor or
cluster would have a small footprint (400k or so) such as

20-4

Example Level 0 architecture: while managing to save the data in temporary storage.
This consists of small clusters of redundant-functionality By handling faults in this way, a race condition could be
microcontrollers or standard CPUs that are not avoided which would occur if part of the data were in a
necessarily identical, each of which has several I/O non-local CPU when the one in the local cluster failed.
channels, with a digital switch layer to isolate any major Rule 2: Association - direct data to associated
electrical faults. This way if the external devices that are destinations (process or memory block in common). This
being interfaced to have noisy data or unstable voltage method of "chunking" data also mitigates similar race
fluctuations, the processors are not damaged. Since the conditions, or skewed timing problems that were
monitor code executing on each microcontroller is mentioned in rule 1.
almost identical (identical if same type / model of Rule 3: Selection - "hot" or pre-selected runner-up
controller) and consists of a few kilobytes to make these processor affiliated with active processor in each cluster.
generic in nature, any damage to, or physical removal of This allows a pre-selected replacement for failed CPUs
any processor does not affect the data or processing in in a lossless manner. In situations where there are an odd
any way. This code also monitors neighbor status and number of processors after a fault, the lone CPU would
handles basic I/O functions, affiliate with either the node of two CPUs under the
We have a small and efficient real-time system, on which heaviest load or a node of two CPUs in the closest
we can optionally load a distributed operating system. proximity.
The operating system would treat each cluster as a single Rule 4: Health - IPC (inter-processor communication) or
processor, with the embedded monitor code "translating" at least "ping" between affiliated processor and runner-
instructions to run as a generic processor. up. This keeps a close watch on when a CPU needs

replacement due to failure or when a lone CPU can join a

cluster by following the selection rule above.
Rule 5: Failure mode - hunt for available processor if

runner-up fails, and check for I/O saturation. Call for
"help" from another cluster if saturated. This is the mode
that a clustered CPU enters when it loses its associate
CPU in the cluster.

Le 0 x e AWe could apply all of this to the example architecture in
Figure 1, without any significant increase in cost for
hardware.

Level 1:
Inclusive of level 0, but level 1 has functionality divided

over two or more layers of clusters - first layer is
clustered I/O or CLIO. Next layer(s) is status health and
management (SHAM). The original ruleset as well as
new rulesets apply, defining more specific boundaries onISHAM and CLIO layers. Enhanced aspects are also
applied, such as intelligent / adaptive configuration
interfaces, to be used by level 2 architectures.

The functionality still remains overlapping with the level
0 architecture, so that if an entire layer is lost due to

Figure 3 - a level 0 example failure, the architecture will fall back to level 0 hopefully
without any significant loss of data while maintaining

full functionality.

Level 0 Rules:

Details on the level 0 rules explain how we can
accomplish our objectives for fault management, health
monitoring, and generic processor functionality in a
small (< 2 Kbytes) code space. For very different
processor architectures some parts of this code would
need to be modified to accommodate unique aspects. We
define five rules that apply to the level 0 architecture,
and also to varying degree to the higher levels as well:
Rule 1: Relation (intrinsic) - keep related I/O in localized
cluster(s). On a small scale this would mean that I/O
from a common or related source would be handled by
one cluster, so that if a CPU failed, then its alternate(s)
would take over for it and request another backup CPU

20-5

The degree of complexity in the level 0 or level 1
architectures may not be sufficient to accomplish this.
However, in this level 2, there are at least three layers,
the first two handling the aspects of level 1, and
additional layers the adaptive aspects.

1- Ex arde Enhancing aspects of the level 2 paradigm can allow
-separate kernels to run on each node, with socket-based

communication handling I/O and IPC.
SSeveral real-time operating systems can exploit the

benefits of this architecture. Two examples of operating
systems that have excellent security built in are:
1) RTMX - this could run as 1 kernel per node. It

:,A exhibits the full Berkeley support for export, NFS and
P 1A shared memory, and incorporates high level encryption.

A This has recently been donated to the OpenBSD project,
as it is open source code. This means that in future
releases of OpenBSD, the real-time portions of RTMX

'will be incorporated. If these future versions support a
DigitaLayer small kernel as in RTMX, then OpenBSD can also be a

Figure 4 - a level 1 example viable operating system for this architecture.
2) PROSE - Developed at Sandia Labs, this could
function as 1 kernel per cluster or even layer, as the
operating system supports a real-time kernel running

Example Level 1 Architecture: over a multi-node network. This was to be certified by
As seen in the diagram, the same clustering is used in the NSA to the B3 level.
level 1 design, but the clusters that handle I/O are in a Both of these can be placed into ROM for each processor
separate layer from the status, health and management. or globally shared, as the entire kernel is less than 400
The two layers communicate with each other similar to Kbytes in size. They are also both publicly available.
the single layer level 0 via inter-layer channels, and yet
maintain the intra-layer and intra-processor
communications as well. Inter-layer communications are
kept short for the most part, unless a major
reorganization of layers needs to take place. This
minimizes overhead on interprocessor communication s 0
links. Reationlship 01 Levels 0, 1, and2
Digital communication in and between layers could be
accomplished by an internally incorporated USB
interface for 809xx series microcontroller, or could be an
Ethernet interface built into a microcontroller (I think % v
somebody already has one out there...). That way each one," I
cluster could pick up a portion of the network load
processing.
Keep in mind that these processors do not need to be
state-of-the-art, but obsolete and inexpensive ones could |RvO| |
suffice. Typical standard microcontrollers cost about $1-
$2. Older PC CPUs cost $10-$30, and can have up to
50% of the maximum processing power available today.

Fault adaptation on intelligent multi-kernel clusters Figure 5 - Relationship between Levels
(Level 2):
This advanced version of the architecture can actively
reconfigure itself for fault avoidance, and adapts to
hostile attacks. An example would be an attack from a The relationship between the three levels just described
networked intelligent agent that focuses onto perceived is as subset / superset, where level 0 is a subset of level 1
weakness in the architecture, or even operating systems and level 2, level 1 is for the most part a subset of level 2
executing on it. The system would be able to compensate with some minor exceptions that have to do with
for and possibly repel future attacks. This is feasible adaptive vs. non-adaptive fault management. The
because of the nature of a distributed system like this. If purpose of designing the architecture in this way is to
one or more layers handle adaptive learning, then it can allow full scalability between having a few CPUs form a
behave like a neural network or other adaptive systems. level 0 to adding on more CPUs to the architecture over

20-6

time to eventually achieve level 2. Beyond level 2 can govern fault related mitigation, we can construct a highly
still be treated as a level 2 configuration, with enhanced modular paradigm for distributed processing.
functional features typical of a massively parallel The modular design fits well with the concepts of OOD
distributed processor machine, and use of UML for definition, and CORBA aspects such

as ORB for hardware modules.
Perspectives and methodologies: Further development of this architecture can result in
This distributed architecture is similar to a neural defining a new standard to apply to distributed
network in many ways, not least of which is its ability to architectures. This standard would simplify hardware
adapt and self-organize in larger versions. An interesting redesign through the modularity of an object-oriented
aspect that would allow us far more control over the hardware paradigm with tremendous cost saving benefits
internal organizational interconnectivity would be to use by re-use of existing low cost obsolescent processors.
tools from the software engineering world and take an
object oriented approach. Currently, the object-oriented
approach is applied only to software. For optimal
benefits to be derived from object-oriented design, the
methodology should be applied system-wide, i.e. to
hardware module objects as well as software. We could References:
then bring the hardware and software worlds together Quinn, Michael J, "Designing Efficient Parallel
into an object based system paradigm.
The architecture described in this paper lends itself to Algorithms for Parallel Computers" ©1987, McGraw-
this type of approach. If we treat these architectures as
object models then we can use existing tools such as Beowulf Clusters Various sources with the best being
Rhapsody, which is designed to work in embedded Scyld Corp: htp://www.scyld.com/
systems and is a UML (Unified Modeling Language)
visualizing environment with a built-in model checker.
This can develop the common ruleset generation for each PROSE para y
level, and possibly map layer connectivity, at Sandia Labs:
Hardware layouts can be managed by a CORBA-like http://www.cs.sandia.gov/ 7Erolf/puma/jrtos/
environment, with clustered CPU mappings defined by RTMX - real-time operating system that recently has
an IDL (interface definition language) and managed by
an ORB (object request broker). The objective here is to bee d ttpenBwwworgaxzton:
accomplish a system-wide object-oriented design not just (1) http://www.rtmx.corm/
limited to software. Ultimately this may create a more
consistent mapping of software processes onto hardware SETI @Home - htp:Hsetiathome.ssl.berkeley.edu/
resources.
Finally, and for future research, a large-scale version of
this may prove useful as an inexpensive alternative to the
quantum computing environment of Shor & Lloyd (Bell
Labs / MIT), at least until that becomes economically
competitive.

Conclusion:
This distributed architecture is based on COTS systems
and essentially does a re-use of obsolescent CPUs. The
distributed architecture constructed can be done at
minimal cost compared to state-of-the-art, or proprietary
systems. It produces a robust architecture that is
upwardly scalable, fault tolerant and dynamically
reconfigurable so that mission critical data is preserved.
The system constructed from this architecture can run
real-time and is a distributed parallel computer.
Essentially, it is a supercomputer built from obsolete and
current components. The trade-off of reliability for
extreme speed is done with distributed modularly defined
clustering. By organizing the methodology of
implementing this architecture into three levels that are
based on the degree of functionality and complexity, and
basing the core level on a set of intrinsic rules that

